1 Reconstitution de l'eau de mer

BJECTIF

Préparer une eau de mer artificielle et mesurer sa salinité par conductimétrie.

La salinité de l'eau de mer est due à de nombreux ions (Fig. 1). Dans cette activité nous allons préparer une solution dont la composition est proche de celle de l'eau de mer puis mesurer sa salinité à partir d'un dosage par étalonnage par suivi conductimétrique.

1 Préparation de l'eau de mer

PROTOCOLE

Sels	NaCl	MgCl ₂	KCI	CaCl ₂	MgSO ₄
Concentrations massiques (g.L ⁻¹)	27,2	2,42	0,39	1,17	3,38

Fig. 1 Composition de l'eau de mer.

- Peser une fiole jaugée de 1 L.
- Peser séparément les différents sels entrant dans la composition de l'eau de mer.
- Les introduire dans la fiole jaugée et les dissoudre dans 0,5 L d'eau distillée.
- Compléter à 1 L avec de l'eau distillée et mélanger par retournement de la fiole.
 - Déterminer expérimentalement la masse volumique de cette eau de mer.
 - **b** Calculer l'intervalle de confiance sur cette masse volumique en tenant compte des incertitudes : $\Delta \rho/\rho = \Delta m/m + \Delta V/V$.
 - Calculer la salinité de cette eau de mer artificielle en g.L⁻¹. En déduire la salinité de l'eau en UPS.

Mesure de salinité par conductimétrie

Les ions chlorure et les ions sodium représentent plus de 90 % des ions de l'eau de mer. Pour des mesures de conductimétrie, le sel de l'eau de mer peut être simplement modélisé par du chlorure de sodium. Il sera préparé $V_0 = 250 \text{ mL}$ d'une solution mère S_0 de chlorure de sodium de concentration $c_0 = 5,0.10^{-2} \text{ mol.L}^{-1}$. Les solutions filles du tableau suivant seront également préparées.

Solution fille	Volume à préparer	Concentration voulue (mol.L ⁻¹)	V _p de S _o à prélever
S_1 $V_1 = 50 \text{ mL}$ $c_1 = 2,0.10$		$c_1 = 2,0.10^{-2}$	
S ₂	V ₂ = 100 mL	$c_2 = 1,0.10^{-2}$	
S_3 $V_3 = 100 \text{ mL}$ $C_3 = 0.5.10^{-1}$		$c_3 = 0.5.10^{-2}$	
$V_4 = 100 \text{ mL}$		$c_4 = 2,5.10^{-3}$	

- d Calculer la masse *m* de chlorure de sodium à dissoudre pour réaliser la solution mère.
- Compléter le tableau en calculant le volume de solution mère V_P à prélever.

PROTOCOLE

Mesures de conductivités

- ▶ Préparer la solution mère ainsi que les 4 solutions filles.
- Mesurer la conductivité des solutions filles en procédant ainsi :
- Étalonner le conductimètre avant le début de la série de mesures. Rincer l'électrode plusieurs fois avec de petites portions de la solution.
- Commencer par la solution la plus diluée.
- Agiter légèrement la solution puis maintenir la sonde immobile. Attendre la stabilisation de l'affichage avant de relever la valeur.
- ▶ Tracer la courbe d'étalonnage représentant $\sigma = f(c)$.
- ► Mesurer la conductivité de l'eau de mer artificielle après l'avoir diluée 100 fois.
 - \bigcap Modéliser la relation entre σ et c.
- Déduire de la courbe d'étalonnage la concentration molaire de l'eau de mer artificielle.
- \bigcirc Calculer la salinité s de cette eau de mer en g.L $^{-1}$.
- Une hypothèse est vérifiée si l'écart relatif entre la pratique et la théorie est inférieur à 10 %. L'écart relatif en pourcentage se calcule par la relation :

$$\varepsilon = \left| \frac{\text{valeur th\'eorique} - \text{valeur exp\'erimentale}}{\text{valeur th\'eorique}} \right| \times 100$$

Vérifier qu'il est raisonnable de modéliser l'eau de mer par une solution de chlorure de sodium.

Matériel

Prof:

- 1 fiole de 1L
- 3 balances de précision
- Verre de montrer pour peser les sels
- Spatule pour chaque sel (5)
- Eau distillée en bouteille 2L
- Pipettes et propipettes
- Ordinateurs portables
- Solution étalon pour le conductimètre

Elèves : (8 groupes)

A installer sur chaque paillasse si possible

- 1 Pissette d'eau
- 1 fiole de 50 mL
- 3 fioles de 100 mL
- 4 petits bechers
- Agitateur en verre
- 1 conductimètre
- Papier pour essuyer la sonde du conductimètre